PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation
نویسندگان
چکیده
Crosstalk between the phosphatidylinositol 3-kinase (PI3K) and the transforming growth factor-β signalling pathways play an important role in regulating many cellular functions. However, the molecular mechanisms underpinning this crosstalk remain unclear. Here, we report that PI3K signalling antagonizes the Activin-induced definitive endoderm (DE) differentiation of human embryonic stem cells by attenuating the duration of Smad2/3 activation via the mechanistic target of rapamycin complex 2 (mTORC2). Activation of mTORC2 regulates the phosphorylation of the Smad2/3-T220/T179 linker residue independent of Akt, CDK and Erk activity. This phosphorylation primes receptor-activated Smad2/3 for recruitment of the E3 ubiquitin ligase Nedd4L, which in turn leads to their degradation. Inhibition of PI3K/mTORC2 reduces this phosphorylation and increases the duration of Smad2/3 activity, promoting a more robust mesendoderm and endoderm differentiation. These findings present a new and direct crosstalk mechanism between these two pathways in which mTORC2 functions as a novel and critical mediator.
منابع مشابه
Reactive Oxygen Species and p38MAPK Have a Role in the Smad2 Linker Region Phosphorylation Induced by TGF-β
Background: Transforming growth factor-β (TGF-β) in addition to the C-terminal region can phosphorylate receptor-regulated Smads (R-Smads) in their linker region. The aim of the present study was to evaluate the role of signaling mediators such as NAD(P)H oxidases (reactive oxygen species [ROS] generators), ROS, and ROS-sensitive p38 mitogen-activated protein kinase (p38MAPK) in this signaling ...
متن کاملCrosstalk between the Smad and the Mitogen-Activated Protein Kinase Pathways is Essential for Erythroid Differentiation of Erythroleukemia Cells Induced by TGF-β, Activin, Hydroxyurea and Butyrate
The role of crosstalk between the Smad and the MAPK signaling pathways in activin-, transforming growth factor-β (TGF-β)-, hydroxyurea (HU) - and butyrate-dependent erythroid differentiation of K562 leukemic cells was studied. Treatment with all four inducers caused transient phosphorylation of Smad2/3 and MAPK proteins including ERK, p38 and JNK. Use of specific inhibitors of p38, ERK and JNK ...
متن کاملEndoglin differentially regulates TGF-β-induced Smad2/3 and Smad1/5 signalling and its expression correlates with extracellular matrix production and cellular differentiation state in human chondrocytes.
OBJECTIVE Transforming growth factor-β (TGF-β) plays a critical role in cartilage homeostasis and deregulation of its signalling is implicated in osteoarthritis (OA). TGF-β isoforms signal through a pair of transmembrane serine/threonine kinases known as the type I and type II TGF-β receptors. Endoglin is a TGF-β co-receptor that binds TGF-β with high affinity in the presence of the type II TGF...
متن کاملTGF-β1/ALK5-induced monocyte migration involves PI3K and p38 pathways and is not negatively affected by diabetes mellitus.
AIMS Monocytes contribute to arteriogenesis by infiltration to sites of collateral growth and subsequent production and release of growth factors. Transforming growth factor β1 (TGF-β1) mediates monocyte motility and stimulates arteriogenesis. TGF-β1 signalling mechanisms mediating monocyte motility are unknown so far. Moreover, the influence of cardiovascular risk factor diabetes on TGF-β1-ind...
متن کاملPPM1A dephosphorylates RanBP3 to enable efficient nuclear export of Smad2 and Smad3.
Smad2 and Smad3 (Smad2/3) are essential signal transducers and transcription factors in the canonical transforming growth factor-β (TGF-β) signalling pathway. Active Smad2/3 signalling in the nucleus is terminated by dephosphorylation and subsequent nuclear export of Smad2/3. Here we report that protein phosphatase PPM1A regulates the nuclear export of Smad2/3 through targeting nuclear exporter...
متن کامل